Math 1433

20 November 2023

Quiz/exam schedule

(It's on the course website calendar.)

- Today: Quiz 4 - matrix calculations
- 11 December: Midterm exam
- January: Quiz 5 and 6
- February: Final exam (and optional retake).

Identiky

The $n \times n$ identity matrix, written $I_{n \times n}$ or I_{n} or just I, is a special matrix such that, if the products exist,

- $I \vec{v}=\vec{v}$ for any vector \vec{v},
- $I M=M$ for any matrix M,
- $M I=M$ for any matrix M.

In a way, each matrix $I_{n \times n}$ acts like the number 1 because multiplying by it does not cause any change.
Formulas: $I_{2 \times 2}=\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right] . I_{3 \times 3}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] . I_{4 \times 4}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.

Inverse

The inverse of M, written M^{-1}, is the matrix for which $M M^{-1}=M^{-1} M=I$. For a 2×2 matrix $M=\left[\begin{array}{cc}a & b \\ c & d\end{array}\right]$, we have

$$
M^{-1}=\frac{1}{\operatorname{det}(M)}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

where

$$
\operatorname{det}(M)=a d-b c
$$

is called the determinant of M.

A square matrix has an inverse if and only if its determinant is not zero.

For larger matrices the formulas are worse, but the boxed fact is still true.

Arithmetic

Algebra

Analysis

Arichmelic

Task: Divide 30 by 12.
Answer:

$$
\frac{5}{2}
$$

or

$$
2+\frac{1}{2}
$$

or
2.5
or
2 remainder 6

Algebra

Task: Solve $12 x=30$.
Answer:

$$
x=\frac{5}{2}
$$

or...

You need to be comfortable with calculations before solving equations.

Arichmetic

Algebra

Task: Multiply $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}5 \\ 6\end{array}\right]$.

$$
\text { Task: Solve }\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] X=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

matrix
You need to be comfortable with calculations before solving equations.

This has the format

$$
A X=B,
$$

so we can solve it by

$$
\begin{aligned}
A^{-1} A X & =A^{-1} B \\
I X & =A^{-1} B \\
X & =A^{-1} B
\end{aligned}
$$

Note: we cannot say

$$
X=B A^{-1}
$$

because $A^{-1} B$ is not the same as $A^{-1} B$.

Task: Solve $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] X=\left[\begin{array}{l}3 \\ 1\end{array}\right]$.

$$
\begin{aligned}
X & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]^{-1}\left[\begin{array}{l}
3 \\
1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & \frac{-1}{2}
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
-6 \\
4
\end{array}\right]
\end{aligned}
$$

matrix
You need to be comfortable with calculations before solving equations.

Delerminane

For 2×2 matrices, calculating the determinant is easy:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

For 3×3 matrices, calculating the determinant is more work:

$$
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=a \operatorname{det}\left(\begin{array}{ll}
e & f \\
h & i
\end{array}\right)-b \operatorname{det}\left(\begin{array}{ll}
d & f \\
g & i
\end{array}\right)+c \operatorname{det}\left(\begin{array}{ll}
d & e \\
g & h
\end{array}\right) .
$$

There is a nice pattern to help you remember/use this formula...
$\operatorname{det}\left(\begin{array}{ll}a & -b \\ d & c \\ e & f \\ h & i\end{array}\right)=a \operatorname{det}\left(\begin{array}{ll}e & f \\ h & i\end{array}\right)-\cdots$

$\cdots+c \operatorname{det}\left(\begin{array}{ll}d & e \\ g & h\end{array}\right)$

Calculate $\operatorname{det}\left(\begin{array}{cc}1 & -2 \\ 0 & 4\end{array}\right)$.

Calculate $\operatorname{det}\left(\begin{array}{cc}3 & -2 \\ 3 & 4\end{array}\right)$.

Calculate $\operatorname{det}\left(\begin{array}{ll}5 & 3 \\ p & 4\end{array}\right)=20-3 p$

Calculate $\operatorname{det}\left(\begin{array}{ccc}5 & -1 & 0 \\ 3 & 1 & -2 \\ 3 & 0 & 4\end{array}\right)$. easy lo forget

$$
\begin{aligned}
& =\operatorname{set}\left(\begin{array}{cc}
1 & -2 \\
0 & 4
\end{array}\right)-(-1) \operatorname{det}\left(\begin{array}{cc}
3 & -2 \\
3 & 4
\end{array}\right)+0 \operatorname{det}\left(\begin{array}{ll}
3 & 1 \\
3 & 0
\end{array}\right) \\
& =5(4)-(-1)(18)+0(-3) \\
& =20+18+0 \\
& =38
\end{aligned}
$$

Calculate $\operatorname{det}\left(\begin{array}{ccc}i & j & k \\ 3 & 1 & -2 \\ 3 & 0 & 4\end{array}\right)$.

$$
\begin{aligned}
& =i \operatorname{det}\left(\begin{array}{cc}
1 & -2 \\
0 & 4
\end{array}\right)-j \operatorname{det}\left(\begin{array}{cc}
3 & -2 \\
3 & 4
\end{array}\right)+k \operatorname{det}\left(\begin{array}{ll}
3 & 1 \\
3 & 0
\end{array}\right) \\
& =4 i-18 j-3 k
\end{aligned}
$$

Magic: vector cross product is exactly this!

$$
[3,1,-2] \times[3,0,4]=4 \hat{\imath}-18 \hat{\jmath}-3 \hat{k}
$$

